Is e-Crime the Future of Cryptocurrencies? A
Comparison of Bitcoin and Monero Using
Smuggling Theory

Abstract—Cryptomining both validates transactions and ex-
pands the amount of cryptocurrency in circulation. As long
as the value of the cryptocurrency created is, or is expected
to increase to be, larger than the cost of mining there will
be an incentive for rational parties to invest in mining. Si-
multaneously criminal participants have the same incentives,
but with different production costs from leveraging cryptojack-
ing, botnets, or ransomware. Given both legal and criminal
participants in the cryptocurrency ecosystem, we argue that
models from criminology which include coexisting legal and
criminal participants are applicable. Specifically we use a well-
established smuggling theory to seek insights on the interactions
of these participant types. Using standard smuggling theory, we
illustrate that in some domains legitimate cryptomining can be
strictly preferable, although criminal transactions will still exist
just as zero crime is rarely the case when legitimate markets
dominate. Alternatively, there is an equilibrium where legitimate
cryptomining is strictly less utility-creating than criminal mining.
In the second case, smuggling theory suggests that criminal
mining will dominate (again legitimate transactions still exist).
We describe the conditions for the two equilibria and argue that
each can be seen in different jurisdictions and marketplaces. We
highlight the interactions between cryptocurrency protocols and
policies with these equilibria. We estimate the cost of legitimate
and criminal mining to explore the distance from either equilibria
using Monero and Bitcoin as examples. The results imply that
the mining structure of Monero is more closely aligned with the
incentive structures of smuggling; thus while much of the focus on
cryptocurrency has been on dramatic ransomware attacks using
Bitcoin, the long term legitimate viability and criminal threat of
Monero may be more worthy of attention. We close by identifying
policies targeted at tilting the balance towards legitimate mining.

Index Terms—Economics, Cryptocurrency, Smuggling Theory,
Cryptojacking, Botnets, Mining, Monero, Bitcoin.

I. INTRODUCTION

The motivation for this work is found in the history of the
Bitcoin ecosystem in both legitimate and criminal markets.
Previous work examining cryptocurrencies marketplaces has
been primarily empirical; focusing on the use of Bitcoin in
other crimes [13]), the theft of resources for cryptomining [39],
and the re-integration of the stolen Bitcoins in the blockchain
after theft [5], [6].

Here we take a very different approach. We build on the
work by Garg et al. [22] which modeled botnets as the criminal
smuggling equivalent of legitimate networked services. We
apply Garg‘s model to the cryptocurrency ecosystem. Specif-
ically, we use the same theoretical model initially proposed
by Bhagwati et al. [9] to examine if there are equilibria

where criminal use of cryptocurrency would dominate the
cryptocurrency ecosystem. We were also motivated by work
of Clayton and Laurie, showing that anonymous use of Proof
of Work to prohibit spam is not possible given the presence
of botnets [14].

In addition to discussing Bitcoin, we also focus our analysis
on Monero. Monero has a shorter history, lower volatility, and
production that aligns with the assumption of the underlying
analysis. We were further motivated in this choice by the
2018 publications from a CERT-SEU analyst who identified
Monero as particularly “appealing to malicious actors” for
botnets, cryptojacking, and click-jacking due to its suitability
for mining via general purpose CPUs [31]. We describe the
Monero ecosystem, distinguish it from the Bitcoin ecosystem,
and review the transactional model.

We start with discussing the motivation behind this research
in Section II. In Section III, we briefly discuss cryptocurren-
cies ecosystem history and review the transactional model in
Bitcoin and Monero. Section IV supports our application of
theories of smuggling by identifying the similarities between
stealing resources for mining purposes and smuggling in the
physical world. In Section V, we estimate the cost under each
of the malicious acts used for cryptomining and compare it
to the costs of legitimate mining. We discuss the smuggling
theory in Section VI. Section VII applies the theory to
the case of cryptocurrencies. It is in this section where we
identify the equilibria based on the analysis done on costs of
malicious mining versus legitimate mining. Finally, Section
IX is dedicated to the conclusion and discussion of the
approach, including the positive valuations and prohibitive
tariffs developing in different jurisdictions.

Our primary contribution is to leverage smuggling theories
from the economics of crime to examine the production
frontiers of cryptocurrencies; then use Monero and Bitcoin
as examples for a more detailed focus on mining through
this new lens. We identify potential equilibria for legitimate
and criminal markets. We note how protocol and policy
choices in cryptocurrencies interact with these equilibria and
evaluate proposals to alter cryptocurrencies based on these
observations.

II. MOTIVATION

Cryptocurrencies which use Proof of Work (PoW) have
two primary inputs: electricity and processing power. The
amount of either is a function of the selected processor and



the type of PoW calculation required. That the electricity and
the processing power are a bundle that is stolen in a machine
takeover makes production with stolen resources relatively
straight-forward. As a result, there is an incentive for theft
of these resources in order to engage in mining.

There is a documented history of malware being used to
takeover machines to use the resources for cryptomining. For
example, in 2012 Plohmann and Gerhards-Padilla documented
that the number of bots reached up to 200,000 computers at
one point which means, at the time, the computational power
of 200,000 computers was being used to mine Bitcoin for a
botnet owner [40]. Two years later in 2014 Huang et al. also
found multiple botnets mining up to roughly 600 Bitcoins
collectively [25]. More recently, other forms of currency
beyond bitcoin have been created using stolen resources [39].
Our analysis is specifically grounded in Bitcoin and Monero
but can reasonably be applied to other proof of work (PoW)
currencies.

In addition to botnets, it is possible to steal resources using
cryptojacking. Cryptojacking websites run scripts that use the
viewer‘s CPU/GPU to mine cryptocurrencies. In 2018 a team
of researchers at Concordia University searched for websites
running cryptojacking scripts and found that in the top one
million websites, around a thousand of them were running
mining scripts for Monero [21]. This means all of these
websites used the viewers® CPU power during their visit to
the website to mine Monero. Saad et al. and Musch et al.
have an extensive analysis of cryptojacking scripts that run on
different websites [43], [37].

In terms of eCrime, the focus on theft of resources has been
on the power that is required for mining and generating new
Bitcoins as well as the Bitcoins transactions that are for the
purpose of money laundering. On the economic side, there
have been multiple studies on how Bitcoin is and could be
used in money laundering schemes because of the anonymity
it offers. (We acknowledge that this anonymity is known to
be limited, e.g, [42], [27].) Bitcoin famously plays a role in
payment for ransomware, for example the role of Bitcoin in
WannaCry ransomware has been documented. [29].

In terms of the use of cryptocurrencies in other criminal
activities, studies have addressed the use of Bitcoin in ran-
somware and the use of Bitcoin in illegal transactions [16],
[28], [7]. An early evaluation by Christin and his colleagues
found that Bitcoin played a potentially essential role in the
Silk Road marketplace for illegal goods [13].

A 2018 survey enumerated the different money laundering
services available on the dark web using Bitcoin [44]. This
built on the work of Moser [33] who had investigated anti-
money laundering strategies that could be applied to Bitcoin
while respecting the anonymity of the Bitcoin users. Anderson
has examined past proposals and solutions on how to deal
with tainted Bitcoins present in the system [5], [6]. Anderson
examined how Bitcoin known to be stolen (as these are by
definition unique identifiable strings) are integrated back into
the blockchain after the theft. He calculates the value of
Bitcoin generated with these stolen goods, and the result

is that were the stolen value removed each Bitcoin would
experience a considerable loss in value. As a counter-proposal,
he builds upon British precedent to propose using a first-in-
first-out standard to separate tainted coins from those with only
legitimate provenance.

Monero is built on the Cryptonote protocol, which can use
a set of mixins to obfuscate the real source of a transaction in
order to enhance the privacy of transactions. This makes fol-
lowing the tainted coins in Monero more complicated than in
the Bitcoin blockchain. Still, Mdser et. al. estimated that 80%
of the transaction could be traced back to their real input with
eliminating the mixins using some deduction techniques [35].
Kumar et. al. had more success a year earlier, illustrating the
ability to identify the initial inputs of 88% of transactions [30].
In addition to these research projects, CipherTrace has filed
two Monero tracing patents in late 2020 and claim they can
effectively trace Monero transactions [2]. These show that
although Monero protocols would make tracking tainted coins
more difficult, policies based on tainted coins could be applied
to Monero using additional tools and techniques. In our model
the ability to trace and discount an illegally generated coin is
implemented as a deterrence cost.

In our extension of the current analysis of cryptocurrency
ecosystems for both criminal and legitimate purposes, we note
that the classic generalized model of a production frontier
in economics uses two inputs of potentially varying costs to
determine the optimal choices for producers. Therefore it is
straight-forward to model the theft of resources for PoW as
changes in the production frontier. We discuss two currencies
because the production curve for every cryptocurrency varies.
We examine both Bitcoin and Monero. The documentation
of these differences in the production frontier is a minor
contribution of this work.

III. CRYPTOCURRENCIES ECOSYSTEM

Bitcoin was introduced in 2009 as a peer-to-peer form of
payment with the promise of being a decentralized anonymous
currency. Its fundamental innovation was the creative and
insightful combination of previously academic proposals: pri-
vacy in public, proof of work, and a method for independently
creating value through mining. Essentially Bitcoin leverages a
distributed cryptographically validated linked list. The bitcoin-
creating blockchain protocol enables the decentralization of
the associated ledger of transactions. The transactions are
posted publicly. There are logs available for every transaction
made on the blockchain. Bitcoin miners who are responsible
for confirming transactions are required to solve a mathe-
matical question (which involves finding a number that its
hash meets certain constraints) which by Bitcoin design takes
around 10 minutes to solve. The design builds directly on
the initial work by Dworkin [19], using processing power
as the basis for the PoW. The first party to solve the PoW
challenge is rewarded with a certain number of Bitcoins . the
number of Bitcoins if a function of the Bitcoin ecosystem and
the commissions committed to in the transactions they have
confirmed. The creation of the Bitcoins and the validation of



the transaction are inherently linked as the resulting block is
concatenated onto the end of the chain.

Up until mid-2010, there were no exchanges for Bitcoin
so the owners and users were dominated by cryptography
enthusiasts who would transfer Bitcoin to each other in a
spirit of open inquiry. In May 2010, the first transaction was
made with Bitcoin, paying 10,000 Bitcoins in exchange for
two pizzas. Note that implies each Bitcoin was valued less than
a cent. Soon, the popularity increased, and by the end of 2010,
Bitcoin surpassed 1$. However, like every other currency, the
existence of Bitcoin depended on its acceptability as a medium
of exchange; transferring Bitcoin requires people accepting it
as a form of payment. The challenge to cryptocurrencies was
that like any currency can only be used if it is accepted and
can only be accepted if it is widely used; and the early value of
Bitcoin beyond novelty was anonymity. The ability to provide
verifiable, non-revocable, remote, and anonymous transactions
was the driver for early adopters as Bitcoin became a dominate
form of payment in online criminal marketplaces. Silk Road,
known as one of the first and most popular market for
smuggled and prohibitive goods on the web (mainly used to
buy and sell proscribed drugs), only accepted Bitcoin as its
form of payment as noted by [13].

With more use Bitcoin gained more value; the Bitcoin price
started to rise, even eclipsing $1,000 for a couple of short
periods in late 2013. Although the price dropped in response
to prohibitions from China on the mining and use of Bitcoin
, these prices gave more publicity to Bitcoin. In 2017, the
price once again reached $1,000, and this time it did not
drop. The rise in the price created more demand for Bitcoin,
and eventually, the price of Bitcoin reached its first peak
of $19,783.06 in December 2017; a recent peak of $27,109
happened in late 2020 [3]. Following the 2017 year-long surge
in the price, the price began to drop, and between 2017 and
2020 the value of Bitcoin fluctuated between $4000-$12000.
That volatility of bitcoin outstrips that of other fiat currencies
is beyond the scope of current model. (Please see [11], [20]
for discussions of Bitcoin volatility.)

As mentioned earlier, the mechanism for expanding the
supply of cryptocurrency is expanded by mining. Every 10
minutes, a block is generated, and its miner is rewarded with a
certain number of Bitcoins. According to the Bitcoin protocol,
the initial reward was 50BTC per block and every 210,000
blocks (roughly four years), the reward is halved (currently
the reward is 6.25 BTC per block).

To ensure a block is generated every 10 minutes, the
difficulty of the mining challenge is determined by the rate
at which recent challenges have been solved. If the recent
challenges were solved in less than 10 minutes on average,
the challenge will get harder, and if the solution time averaged
more more than 10 minutes on average, the difficulty is
decreased. Solving these challenges requires computational
power rather than mathematical acumen, so anyone with a
processor can participate in mining. The more difficult it is
to solve the challenge, the more computational power needed
to solve the challenge in 10 minutes. Despite the prospect of

decreased numbers of Bitcoins as a reward, the remarkable
increase in price led to a corresponding increase in mining
Bitcoin. Given the relatively straightforward link between
having computational power and making money, there was a
corresponding increase in investment in computational power.
In this work, we examine the investment in computational
power as investments in two markets: the legitimate trade of
computational power and the use of computation power that
is neither owned nor leased by the miner.

In the Bitcoin market there appears to be stabilization of
mining and transactions. In terms of mining, the specific
requirements for creating a hash collision can be optimized
by using Application-specific integrated circuits (ASICs). The
availability of ASICs for mining has fundamentally changed
the production frontier, so general purpose CPUs are no longer
competitive. In our discussion we consider the applicability of
our results on the Bitcoin ecosystem before the widespread
adoption of ASICs.

Monero mining follows the same overall structure as Bit-
coin. A mathematical proof-of-work must be solved to suc-
cessfully mine Moneros. The time to mine a Monero block
is around 2 minutes and each successful instance of mining
is rewarded with a grant of roughly 1.25 XMR (Moneros).
However, the main difference between mining Monero and
Bitcoin is that Monero proof-of-work does not use an ASIC-
friendly algorithm and thus the mining will likely remain
competitive on CPUs or GPUs. This means even a personal
computer with a strong CPU/GPU could be a useful hardware
for mining Moneros, in contrast to the hardware chipsets
optimized to mine Bitcoin.

The range of legal and illegal sources of computation power
underlie this analysis. The large number of computations
needed for mining results has resulted in the formation of
pools, as individuals share their devices. In pools members
contribute computation resources and when cryptocurrencies
are awarded after mining, members in the pool are granted
a portion of the rewards, relative to the computational power
they have contributed.

The need for computational power and the promise of
anonymity enable comparison to smuggled, illegal goods.
Cryptocurrency criminals seek to steal processing power and
electricity for mining to reduce production costs, just as
smugglers seek to avoid tariffs.

IV. MINING AND SMUGGLING

Criminology research addresses both criminal and legitimate
trade and activities, often finding these in the same market.
For many goods the flow of assets between those markets
results in demand being modeled as a single curve, with the
same demand being served by all producers. Here we treat
cryptocurrency as such a market: there is a demand that can
be fulfilled by criminal mining or legitimate mining. Despite
the nomenclature of currency and the dominate design goal
for simple private transactions, cryptocurrency has a contested
nature as inherently valuable asset, monetary instrument, or
commodity. Here we begin with the assumption that the



Department of Treasury is correct, cryptocurrency is an asset,
one that is distinguished by its volatility and unusual risk
characteristics [17], [18]. With that as a plausible functional
assumption, we can use a standard comparison of goods which
can exist in both licit and illicit markets to examine the
dynamics of the licit and illicit cryptocurrency markets.

Previously Garg [22] made the argument that botnets could
be examined using the model of smuggling. This underlying
theoretical structure was used both to propose policies towards
the ecrime and to contribute to the explanations for the
concentration of botnets, spammers, and other components on
ecrime in different regions, just as smuggling of different types
is concentrated in distinct regions.

In cryptomining, as with any business, the profitability is
primarily a function of long run marginal cost. This the cost of
producing one additional unit of production, which is the cost
of the electricity. Below we examine two models for legitimate
mining, one where processing power is assumed to be a fixed
cost (and thus not part of long term marginal cost) and then
expand this to try to capture marginal processing cost. For
botnets this is the cost of obtaining an additional machine for
mining; for ASICs the marginal cost of processing is identified
as a source of uncertainty. As a result of the difference in
ASICs and botnets, the result is that the smuggling cost is
decreasing relative to the legitimate cost. Essentially our core
assumption is that any miner can vary the two primary essen-
tial factors of production: processing power and electricity.

As a result of the number of computations that these
hardware devices do, maintaining the devices can be an issue
due to heating, especially for facilities that hold a large
number of these devices. We acknowledge this and other
maintenance cost is a weakness as we focus on a two input
production model. We note that recent work by Collier and his
colleagues at Cambridge illustrated that the customer support
and maintenance cost in ecrime is quite similar to that of
legitimate businesses [15].

To return to the case of mining, a number of computations
must be completed in a certain amount of time in order to
successfully mine. This number has been increasing in the
aggregate in the past years for all of the cryptocurrencies.
At times the necessary number of computations is so high
that a miner using the best device available would either be
experiencing a loss, or face a long term multi-year path to
cover the cost of their processing platforms using mining
profits unless electricity prices remained under $0.09 per kWh.
Recall this is only considering the electricity as marginal cost,
and not any overhead such as facilities space or maintenance.
An analysis of cross-national production, volatility, and global
distribution similarly concluded that electricity cost, coin
value, and volatility were the dominant determinants of global
supply, supporting this analysis [38].

Another similarity is in the existence of national prohi-
bitions. There are propositions to prohibit cryptomining in
multiple jurisdiction around the world (mainly those countries
with lower electricity costs). For example, both the Chinese
and Iranian governments have made policy statements about

the value of removing the drain of cryptomining from their
national grid [8], [1]. Iceland continues to have a complex
relationship with the cryptocurrency community [24]. Globally
the governmental responses range from zero tariffs to prohi-
bition [38].

V. PRODUCTION COSTS

In this section, we define the smuggling model used for our
analysis. To begin we discuss the cost models of three different
mining methods.

A. Legitimate Mining

1) Bitcoin: Here we are focusing on modeling the two
possible marketplaces an abstract model of production is
useful. The issues of legitimate and illegitimate production
spans different cryptocurrencies. For our illustrative example
currency we will include the cost of mining in Monero, which
is more suitable for mining with personal computers.

In the earlier days of Bitcoin, miners would use their
personal computers for mining purposes; however, general-
purpose machines are far from optimal. As a result of this,
there are ASICs (Application-specific integrated circuits) that
are designed to do the computational work needed for mining
optimally. At the time of writing this paper, the best ASIC is
AntMiner S9 which can do 13.5 TH/s (13.5 * 10'?) with a
power consumption of around 1.35 kWh. Although the price
of ASIC itself and the costs of maintaining the ASIC due to
heating are not low, the main cost for mining using ASICs is
the electricity cost. The current network hash rate is around
132 million TH/s, which means, if we can hash at this rate for
ten minutes (the duration between two successive minings), we
can mine successfully and get the associated 6.25 BTC reward.
So the number of ASICs needed for a successful mine is as
follows:

132 % 1018 (Hash)
13.5 % 1012( Hash)

Which is 9777777 AntMiner S9s. The electricity costs for one
Bitcoin would be:

$ 1 1

)k =k ——
kEWh’” 6 6.25
The division by 6 is because our power consumption is in
hourly rate and each block is mined in ten minutes, and the
division by 6.25 is because in each successful mine, the miner
is rewarded 6.25 Bitcoins and we are calculating the cost for
one Bitcoin. The electricity rate differs in different parts of
the world. In the United States, the minimum electricity cost
is $0.08 per kWh, and the average rate is around $0.12. So
the minimum cost would be $28,160 and the average cost
would be $42,240. Considering the fact that the Bitcoin price
is currently $31,000, one can see how close it is for mining
not to be profitable in the United States even with the lowest
electricity rates. It is interesting to mention that Bitcoin value
has surged by a %100 during the past couple of months, which
means a couple of months ago the gap between the cost and
the value was even greater than what it is right now. Also

Cost = N %1.35(kWh) x Electricity Rate(




recall that we are not considering the hardware and heating
cost associated with starting and maintaining mining. No one
owns this much computing power; however, everyone can
contribute to mining pools and get rewarded relative to the
computational power they have contributed to the mining pool.
The administrators who run these pools charge fees when a
Bitcoin is mined, which is another source of cost. You can
see the profitability of Bitcoin mining from March 2020 - Feb
2021 in Figure 1.
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Fig. 1: Comparison between the Bitcoin value and its cost
with different electricity costs.

2) Monero: At the time of this paper, the best CPU for
mining Monero is AMD EPYC 7742 which can do 44,000
H/s that is a 225W CPU. The current network hash rate
is around 1.3 GH/s, which means hashing at this rate for
two minutes (the duration between two successive mining
operations) results in success and the associated 1.25 XMR
reward. The number of ASICs needed for a successful mine
is:

1.3 10%(Hash)
44 103(ash)

Which equals to 29545 CPUs. The electricity costs for one
successful mine would be:

1 1
7*7
30 1.25

Cost = N%0.225(kW h)«Electricity Rate( i ES

kWh
The division by 30 is because our power consumption is in
hourly rate and each block is mined in two minutes and the
division by 1.25 is because each successful mine yields 1.25
XMR. By using the same minimum and average electricity
costs that we used in the Bitcoin section, the minimum cost
for mining one Monero is $14 and the average cost is $21.
Comparing with the Monero value which is $169 at this time,
we can see that the reward will outperform the electricity cost,
however, considering the fact that these CPUs cost around
$7,000 it would take miners more than 5 years to just pay back
the cost of the CPUs (remember this is mined with N CPUs,
so the hardware cost is N * 7000). On top of that one should
remember to consider the costs of maintaining and mining
pools to have a more accurate calculation. The profitability
for Monero in the past year is illustrated in Figure 2.

—— Cost based on 8 cent electricity
Cost based on 12 cent electricity
—— Monero price

Fig. 2: Comparison between the Monero value and its cost
with different electricity costs.

B. Botnets

In this section we look at the profits made by botnets mining
Bitcoins and Moneros.

1) Bitcoin: In this model we were informed by the results
of Huang et al. in estimating the costs of a botnet and the
profitability of these botnets [25]. We specifically examine the
botnets mentioned in their research paper: ZeroAccess and
BMControl. According to their findings, ZeroAccess mined
486 Bitcoins during the span of roughly 1.5 years with an
estimated return of $8,300. BMControl ran for one year,
mining 3,097 Bitcoins with a dollar value of around $46,300
at that time. These numbers indicate the profits from the
use of botnets to mine. Consider that a botnet is a general
input, and can be used for multiple activities. For example,
consider the cost structure and low marginal returns of spam,
where tens of millions of emails (with the interrelated cost
of email account creation, target acquisition, and customer
service) may result in a handful of purchases [26]. Of course,
the processing requirements for cryptocurrencies are orders of
magnitude greater than those of spam.

Using a botnet to mine requires building, renting, or taking
over the infrastructure. In terms of building a botnet as
business, Putman [41] described the spread of malware,
including the economics of distribution. We also leverage their
pay-per-install model in which botnet masters pay a certain
amount of money for every thousand unique infected devices.
Caballero et al. [12] described the pricing of the use of
botnets, once constructed. Their results documented how the
prices for infected devices differ based on their geographical
location, with devices in US and UK valued at $100-$180
per thousand installs, devices in other European countries
ranging from $20 to $160 for a thousand installs, and other
countries priced below $10 for every thousand installs. We use
the average numbers mentioned in this work, ($140 for US
and UK, $90 for other European countries and $5 for other
countries) to estimate the cost of the two mentioned botnets.
Huang et al. show a distribution by country of the devices
enrolled in each of the botnets. Our model uses Huang‘s
density measure and used a weighted mean for costs based
on the geographical location of the bots. Using this approach,



we estimate that the cost of ZeroAccess as roughly $750 and
the cost for BMControl as $10,400 for the entire lifespan of
the botnets.

2) Monero: To calculate the cost of mining Monero on
a botnet we use the results of the thorough research done
by Pastrana et. al. in late 2019 [39]. They investigate the
behavior and gains of multiple botnet campaigns and report
their findings. Their research examines Photominer, Adylkuzz,
Smominru, Xbooster, Jenkins and Rocke botnets. They report
that the top ten botnet campaigns made a total of $38M while
all of the campaigns made $58M during their active period.
During this time, the highest earning campaign made around
$20M in a span of around three years and was still active at
the time of publishing the paper. They also show how their
reported amount of Moneros mined illicitly summed up to
around %4.5 of all the outstanding Moneros at the time.

To compare the production of legitimate and illegitimate
mining, we need to estimate long run marginal cost for each.
For the case of illegitimate mining, the cost of botnets is
dominated by the cost of the malware distribution. This cost
tends to be lower than the mining rewards, given historical
pricing. Botnets have a higher setup fees due to the need for
distribution of the malware, and after that, they face mini-
mal continuing costs, while legitimate miners pay effectively
noting but fixed cost of a processor, but have to pay the
potentially high electricity costs to keep mining. Long run
marginal cost for botnets integrate the cost of enforcement,
referred to deterrence cost in smuggling models.

C. Cryptojackers

Cryptojacking refers to the use of scripts on a website
that harness the viewers* CPU to mine cryptocurrencies for
the duration of the connection to the website. This duration
may be moments, or an open tab may allow for extended
mining. Scripts for mining cryptocurrencies are typically set
up in one of two ways. The first method is when a website
owner purposefully decides to run these scripts on their own
website as an alternative or in addition to ads to monetize its
viewership. And the second method is via subversion: when an
attacker takes advantage of security vulnerabilities in a website
to inject malicious scripts into the website to use the viewers’
CPU to mine for their own gain.

Saad et al. [43] illustrated that although many of the top
one million websites run cryptojacking scripts, the revenue
made from cryptojacking is orders of magnitude less than what
they would make from ads. As a result, they argue that cryp-
tojacking could not replace ads as a monetization technique
for websites. However, cryptojacking and advertising can co-
exist on a website; there is no need to forego advertising for
cryptojacking. In economic terms, these are not substitutes so
that an increase in one does not imply a decrease of the other.

Due to its design, Monero has been the cryptocurrency of
choice for cryptojackers. As a result, we focus on Monero
mining scripts in our analysis of malicious cryptojacking. In
2018 a security vulnerability was found in Drupal, a content
management framework run by 2.3% of internet websites.

Attackers started exploiting this vulnerability to inject cryp-
tojacking scripts into vulnerable websites, in attacks called
Drupalgeddon 2.0. In May 2018, a researcher from Bad
Packets LLC., Troy Mursch, wrote a blog about the websites
effected by these scripts (the blog has been updated multiple
times since then) [36]. He was able to locate more than 300
websites infected by these scripts, including governmental and
university websites. He identified roughly 115,000 websites
vulnerable to the attack. Around the same time, Matthew
Meltzer and Steven Adair from Volexity, a security firm, wrote
a blog on the profits made by Drupalgeddon 2.0 [32]. They
found the wallet address linked to the Drupalgeddon 2.0 scripts
which had been active for roughly a year. The wallet address
had been used in two different mining pools. In one of them,
there was $13,400 worth of Moreno mined, and in the other
one, there was $105,566.80 worth of Moreno at the moment
of the announcement. This shows that this attack was able to
mine around $120,000 worth of Monero in a year. We estimate
the upper bound of the costs for this attack. We assume that all
115,000 vulnerable websites found by Mursch were infected
by a pay-per-install malware service. Based on the average
costs discussed earlier in the paper, the cost of such an attack
will be around $10,500. These costs are one-time setup costs,
and as long as the scripts are running, the attacker is making
money from other users resources. This return of a thousand
percent on investment is unusual in legitimate commerce.

In contrast to the focus on malware, a comprehensive survey
of cryptomining in 2019 found that the cryptomining by third
party apps dominated. That is, rather than being the result of
malware or web site takeovers, cryptomining was embedded
in third-party services and add-ons. The websites were not
subverted, but were rather bundling the code as part of the
served package with content and services. The results of this
large scale study were that such quasi-legitimate mining was
three time the size indicated by previous work [10]. In this
work we consider this cryptomining software as part of the
smuggling category.

VI. SMUGGLING THEORY

In 1973, Bhagwati et al. first proposed the smuggling
theory [9] we use here. It was an intellectual innovation in
that it recognized that smuggling could be utility optimizing.
Before that time, smuggling models presumed that like other
criminal activity, i.e. violent crime, smuggling could not attain
a stable equilibrium and that legitimate markets need only
be nudged into dominance. The foundation of the model is
production possibility curve (or production possibility fron-
tier). In production possibility graph, each axis represents the
amount of a produced good. The x and y axes are the inputs,
which normally are vast simplifications but match the process-
ing power and electricity inputs required for cryptocurrency
mining notably well.

The production possibility curve assumes good A and B
use the same resources. Different production curves embed
different constraints and limitations of each, and shows what
is the maximum number amount of the goods A and B can be



produced. We provide a basic production possibility graph in
figure 3. In this figure, for point 1, there are unused resources,
so production would expand until all available resources are
used. Point 2 shows a point on the production curve illustrating
optimal use of the resources so that increasing one good would
require decrease in the other. In contrast point 3 represents
an impossible production given the constraints and resources.
In smuggling theory, the two goods under consideration are
legitimate and smuggled goods each of which has its own
production cost given the available inputs.

Without loss of generalization we can select three points on
this curve, which represent production points for free trade, in
the presence of tariffs, and smuggling. You can consider them
as slight shifts based on different costs of inputs. Note that in
this paper we only need to consider two production points:
optimal production in the presence of tariffs and optimal
production for illicit goods. We use the tariff example rather
than the free trade conception, as under Bhagwati et al’s model
free trade has no associated regulatory nor maintenance cost.

Fig. 3: An example of production possibility graph

In Figure 4 any point on the graph shows how much of a
good is produced with inputs A and B. The transformation
curve shows the classic abstract production from available
inputs. In this case, the cryptocurrency is modeled as produced
by processing power and electricity. Smugglers produce from
stolen goods, cryptojacking, or using legitimate production
to avoid sanctions, money laundering regulations, or other
prohibitions that are typically modeled as expensive tariffs.
However, they do not pay for electricity or processing power.
Legitimate producers pay for electricity, and we extend our
model to consider processing power.

Here Py is the optimum production point in the legal trade
and Pg is the desired production point of smuggling. The
domestic price is the tangent to curve at Pr. A transformation
curve is drawn from each of these points. In a transformation
curve the slope at each point shows the cost to produce one
more unit of the good at that point. The cost of legitimate
production is always constant and thus the transformation

curve is a line for the legal trade production point. However,
this might not be the case for smuggling in which the costs
could be constant, increasing, or decreasing depending on the
situation. Figure 4 shows an example of such a curve when
the costs for increased legal and illicit production are both
constant. In this example, the cost of producing or trading
the good legally is greater than the cost of smuggling it.
Therefore, its transformation line is steeper than smuggling’s
transformation line. Note that, neither of the transformation
lines are as steep as the domestic price, which is the tangent
at Pr. Cr and Cg represent the consumption rate of the
consumers.

Fig. 4: Transformation curve with constant costs

To continue with our application of the smuggling theory,
we need to define utility and social indifference curves. Utility
is the satisfaction consumers receive by choosing and using a
product. Indifference curves are curves that every point on the
curve has the same utility for the consumer. These curves are
usually drawn as convex because when a consumer has a large
number of good A and a small amount of good B, replacing
large amounts of A with small amounts of B will result in the
same utility.

Figure 5 shows a set of indifference curves. In this figure,
all the points on indifference curve one (/C) have the same
utility and all the points on indifference curve two (IC5)
have the same utility as well, however, the overall utility on
the indifference curve (IC5) is higher than indifference curve
(ICY). As a result, if one has a budget line of L1, it would be
best for them to buy the combination of goods represented by
point A to maximize their utility as the line is tangential to an
indifference curve. (In this case, the processing and electricity
could be used for gaming, other commerce, or in the case of
smuggling, spam or phishing.)

In our smuggling theory sample, the consumption rate of the
smuggling is found by maximizing the utility given the trans-
formation line. The indifference curve that is tangential to the
smuggling transformation curve will highlight the smuggling
consumption rate. However, for legal trade, the consumption
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Fig. 5: A sample of indifference curves where the utility of
all points on each curve are the same, and the utility of
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rate is not obvious. Bhagwati et al. would pick two points, one
on which the utility will be less than that of the smuggling
consumption rate, and one where the utility is an improvement
on the smuggling utility and then discuss the feasibility of the
two situations. We will use the same process in this paper. It is
worth mentioning that utility curve in the legal trade is drawn
tangential to the cost line drawn from Cr and not tangential
to the transformation curve itself.

VII. SMUGGLING APPROACH TO MINING

We assume perfect competition in the cryptomining market,
which means all of the cryptocurrencies in a system face the
same production cost, utility, and price. Same as the model, we
assume that the community is indifferent about the origin of
the good they receive. In other words, we assume a cryptocur-
rency user makes no distinction between the cryptocurrencies
generated legitimately and those generated criminally.

A. Mining Under the Current State

Our model, or rather our adoption of Bhagwati‘s model, is
depicted in Figure 6 and Figure 7 using the same concave pro-
duction curve. P g is the desired production point of smugglers,
and P 7 is the production rate in a legitimate market. The slope
of P 1C 1 shows the cost of production under tariffs, which
for us is the cost of legitimate mining. The same applies to
P sC s; the shape of the curve illustrates that it is arguable that
the marginal costs for stealing resources decreases over time.
In other words, an assumption that taking over more computers
is easier when botnet is already established is embedded into
the model by the negative slope from P g to C 5. At some
point the lowest marginal cost is reached and the cost line
approaches constant. Notice that the slopes show the marginal
costs and do not include fixed costs, as the model is of the
long term state. As a result, the slope for P tC 1 is more

than the slope for P sC g even before marginal costs become
decreasing. Lastly, U r and U g show the utility achieved using
a tariff-based environment or smuggling-based environment
showing utility of smuggling U s >U 1 in Figure 6 and
utility of legal trade U ¢+ >U g in Figure 7. In the first case,
the smuggling is welfare-increasing and in the physical world,
such a case would result in legal trading ceasing to thrive, as
the cost of illicit production is lower, and the utility is higher.
In other words, smugglers could provide the good for a price
that legitimate importers can not match. However, in our case
we focus on the production of a good (cryptocurrency mining)
where the value of the good is exogenously fixed in the market,
this will not necessarily result in a suppression of legitimate
mining.Therefore mining process might be still profitable for
legitimate miners (which we discussed in detail in Section V).
Thus they will continue to produce. However, should the
price fall significantly it is possible that there will be an
equilibrium at which legitimate mining becomes unprofitable
and only illegitimate mining remain profitable. In the case
where legitimate mining is welfare-increasing (Figure 7), you
can see that the consumption rate is close to the maximum
rate, which means only the maximum rates of consumption
in this case can lead to an increase in utility compared to
smuggling. Although these consumption rates are possible, in
real world they are highly improbable.

In the following discussion we begin with the possibility that
under the current state and policies, the equilibrium is the one
under which smuggling is welfare-increasing and theoretically
could suppress legitimate mining in the long run.

Mining with Stolen
Resources

>

Legitimate Mining

Fig. 6: Perfect competition in cryptocurrency mining at the
current state with smuggling having a greater utility

VIII. TAINTED CURRENCIES

In this section we discuss the proposed policies which have
been recommended to address the criminal production and
uses of Bitcoin. While these could be used for Monero or
any other cryptocurrency we use Bitcoin as the focus of the
discussion due to the richer historical data and wealth of
research. As noted above applying such techniques to Monero
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Fig. 7: Perfect competition in a cryptocurrency mining at
the current state with legitimate mining having greater utility

would need the use of additional tools to help with tracking
of tainted coins.

We start with the work of Anderson, who argues that
legalizing the Bitcoin industry should start with tracking
known stolen Bitcoins [5], [6]. He begins his analysis with
the previous proposals by Moser et al., which suggests two ap-
proaches for dealing with stolen and illegal activities: ‘haircut’
and ‘poison’ [34].

In the poison approach, if one stolen Bitcoin is added to a
wallet then all Bitcoins in the wallet are considered stolen. This
approach has the advantage that criminal wallets, not simply
individual Bitcoins, are removed. With a poisoning policy one
identified stolen Bitcoin added to a wallet results in all the
Bitcoins in the wallet becoming worthless and unusable for
transactions.

In the haircut approach each Bitcoin in a wallet is decreased
according to the number and value of Bitcoins in that wallet.
For example, if one stolen Bitcoin is deposited into a wallet
which already has four Bitcoins in it, after the deposit, all
Bitcoins in the wallet are considered 20% tainted. In this way,
moving Bitcoins between wallets to launder them would no
longer be feasible. The objection to this proposal was propa-
gation of the dilution. This approach leads to the propagation
of the taint when one stolen Bitcoin can lead to many tainted
Bitcoins further down the blockchain. Conversely, it also
limits the ability of attackers to use pass-through accounts to
obfuscate ownership of even large numbers of stolen Bitcoins
such as documented in the network analysis of Goldsmith
[23]. They illustrated that different groups leveraged distinct
identifiable approaches to cashing out and that approaches to
identifying one criminal transaction does not match to another.

In contrast, Anderson proposes a FIFO approach in which
they propose that the first Bitcoins spent from the wallet are
the first Bitcoins that were deposited into it. In this way, one
can track the exact stolen Bitcoins, and those are not mixed
into other legitimate Bitcoins.

All of these approaches assume that as soon as criminal

Bitcoins get identified these can be tracked, and one can embed
criminal deterrence into ta cryptocurrency ecosystem. Thus the
stolen Bitcoins will start to lose value based on these policies.
Here we model this cost as deterrence costs in criminal mining.

complexity of tracing taint through the blockchain, which
includes the challenge of identification of criminal actors.
The above illustration from [4] that visualizes the remarkable
density of taint in the blockchain, also illustrates the
coexistence of robust legal and criminal markets.

In this section, we make the admittedly bold assumption
that the same tracking systems proposed for theft are applied
to illegitimate mining, so if at any time it is understood that
a block is mined via stolen goods, the Bitcoins generated
for that mining could be considered tainted and can lose
value. Arguably, this would align with the identifiability of
IP addresses in the blockchain [27], [36] as well as the iden-
tification of relative few large-scale cryptojacking operators
in [36]. This loss of value acts as a risk and cost for the
production of cryptocurrencies. We integrate this cost as a
deterrence cost by shifting the production cost, again aligning
with classic smuggling theory. The equilibria for these cases
are shown in Figure 9 and Figure 10. As a result the marginal
cost for illegitimate mining increase. In addition, the marginal
costs are no longer considered decreasing because of the
increasing likelihood of detection. Recall that deterrence is the
product of likelihood of detection, likelihood of enforcement
action, and cost of enforcement action. The likelihood of
detection increases with scale, although it is easier to add bots
to a mature botnet or increase diffusion of widely-installed
cryptojacking scripts, expansion leads to increased risk of
detection. In addition were any of the FIFO, poison, or haircut
approaches to be adopted the enforcement would be integrated
into the protocol, so expected cost would be increased as the
criminal cryptocurrencies would certainly lose value.



We assume the cost of increased risk of deterrence is equal
to the decreased marginal costs of botnet expansion and the
result is roughly constant costs for illegitimate production.
Note that the poison approach, where the risk is losing all
of the generated cryptocurrency, the model would result in
greater deterrence costs. Yet the distribution of tainted coins
in the Bitcoin ecosystem under the poison model results in a
situation where there is such potential widespread loss that we
perceive the adoption of this approach to be least likely. The
density of taint in transactions in figure 8 from [4] supports
this argument.

In contrast, tainting is shown in this case the equilibrium in
which the U g >U r will only happen when the consumption
rate for legitimate mining is already minimal. Such minimal
participation of legitimate mining would indicate little to no
valid use, and would indicate that the legitimate mining of the
cryptocurrency was collapsing. The other equilibrium shows
the situation where U 1 >U g and as a result smuggling is
welfare decreasing. These models assume that the impact of
haircutting or poisoning on legitimately produced coins is neg-
ligible. In fact only if FIFO is selected as the mechanism for
bringing cryptocurrencies into reliable legitimate commerce
could we be confident that the effect on legitimate coins would
be negligible. FIFO would result in no impact or loss of value
in legitimate production.

These results support the adoption of some form of taint
tracking. The high cost of smuggling could lead to legitimate
mining suppressing illegitimate mining if the cost of deter-
rence is increased. Note that this could improve the health of
the ecosystem, as the cryptocurrency ecosystem depends on
profitability of legitimate mining to thrive.

While the identification of stolen bitcoins from some at-
tacks, such as massive hacks, is straight-forward identification
of any coin created by click-jacking, botnet production, or with
ransomware wallets that are not detected is a challenge.

Mining with Stolen
Resources

(]
P SO Ys
\E)\Cs
T
b @\
CT®\1

Legitimate Mining

Fig. 9: Perfect competition in cryptocurrency mining with
the inclusion of cryptocurrency tracking with smuggling
having greater utility
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Fig. 10: The model of cryptocurrency mining with the
inclusion of cryptocurrency tracking with legitimate mining
having greater utility as a result of the loss of utility due to

tainting policies.

IX. CONCLUSIONS AND FUTURE WORK

In this work we argue that the theft of resources to lower the
costs of mining in cryptocurrencies is analogous to smuggling.
Building on that and leveraging smuggling theory, we show
that with the current state of cryptocurrencies, there is a possi-
ble equilibrium where smuggling forces legitimate mining out
of the market. This equilibrium requires either low cost, low
expectations of future cost, or the existence of no substitutes.
The existence of this equilibria supports the adoption of track-
ing algorithms such as those proposed by Anderson [5], [6]
and Moser et al. [34]. Where only legitimate actors are mining
and all of them are at a loss, the reactive nature of the protocol
significantly contributes to the survival of cryptocurrencies.
Our results both supports the proposals to introduce policies
to track tainted cryptocurrencies in order to add deterrence
cost to illicit cryptomining while simultaneously identifying
the influence of the choice of PoW mechanisms as highly
variable in terms of their resilient against such an outcome.

It is important to reiterate that one of the main reasons for
Monero becoming the cryptocurrency of choice for crypto-
jackers is the PoW protocol which is not ASIC-friendly. If
Monero were to adopt an ASIC-friendly algorithm for their
PoW, personal computers would systematically be less useful
for mining Monero and thus cryptojackers would have less
profits.

We believe that our results can be supported by examining
the history of Bitcoin through a lens of smuggling. In the
earliest days of Bitcoin, a considerable share of its transactions
were highly concentrated in e-crime transactions. As Christin
showed in his research on Silk Road, over a period of 29
days, Silk Road transactions accounted for 4.5% of Bitcoin
transactions across all exchanges [13]. This is an example of
how criminal use, associated literal smuggling, increased the
value of Bitcoin . The use of Bitcoins in illegal transactions



was arguably welfare increasing when both mining costs and
Bitcoin values were low. In this paper we examined crimi-
nal and legitimate production of cryptocurrencies, including
Bitcoin, under different production models.

When the cost of mining was low and the value of the coins
was similarly far less the supply of tainted Bitcoin could have
been an important component of the Bitcoin supply. However,
when there was a lower production curve for illegally produced
Bitcoin, it was possible for an equilibrium to exist where
legitimate miners were excluded from the mining pools. When
it was the case that it was possible to mine Bitcoins using
a general CPU, using botnets for Bitcoin mining was a
significant problem. However, the use of ASICs changed the
production frontier of legitimate Bitcoin such that criminal
activity in the actual mining process is no longer common.

For any cryptocurrency exclusion of legitimate miners from
the mining pool could be prevented with sufficient deterrence
cost; not only on the use of stolen coins but also on the use
of stolen cycles. Tracing the wallets used in malware and
cryptojacking and applying FIFO, haircuts, or other deterrence
costs are feasible approaches to avoid the risk of such an
equilibrium.

Beyond policy changes that could be suitable for any
cryptocurrency the specific design of PoW for Bitcoin has
made it less attractive over time for criminal mining. In
contrast to Bitcoin, the PoW of Monero democratizes mining
by using a PoW mechanism suitable for CPUs. Conversely, the
tremendous cost of carbon associated with mining protocols
that use processor-based PoW would then also be associated
with Monero. This observation indicates the complexity of
modeling the risks and costs of ccs.

For future work, we hypothesize that the reactive mech-
anisms that exist in Bitcoin and Monero mitigates the risk
of a dominant smuggling equilibrium as the price of mining
changes as more parties exit the market. One component of
future work is expanding these models to include systematic
feedback and examining the resulting dynamics. Also exam-
ination of global distribution of cryptocurrencies, electricity
prices, and deterrence would enable global comparisons to
examine potential smuggling havens for various cryptocurren-
cies. A comprehensive dynamic model of cryptocurrencies that
would necessarily include the costs of carbon as well as the
cost of theft and ransomware, and thus is a longer term project.
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